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Abstract

Computation of optical flow has been formulated as nonlinear optimization of a cost
function comprising a gradient constraint term and a field smoothness factor. Results
obtained using these techniques are often erroneous, highly sensitive to numerical pre-
cision, and determined sparsely, and they carry with them all the pitfalls of nonlinear
optimization. In this paper, we regularize the gradient constraint equation by modeling
optical flow as a linear combination of an overlapped set of basis functions. We de-
velop a theory for estimating model parameters robustly and reliably. We prove that the
extended least squares solution proposed here is unbiased and robust to small perturba-
tions in the estimates of gradients and to mild deviations from the gradient constraint.
The solution is obtained by a numerically stable sparse matrix inversion, giving a reli-
able flow field estimate over the entire frame. Experimental results of our scheme are
surprisingly accurate and consistent across a variety of images, in comparison with the
standard optical flow algorithms. We argue that our flow field model offers higher accu-
racy and robustness than conventional optical flow techniques, and is better suited for
image stabilization, mosaicking and video compression.
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1 Introduction

The estimation of inter-frame apparent motion is a key element in image sequence analy-
sis. Accurate and dense motion estimates are a prerequisite for a wide variety of processes
including image stabilization, computation of time to collision, extraction of 3D struc-
ture and video compression. The computation of optical flow, which is defined as the
2D projection of the 3D motion field, has been widely studied [1-12]. Recognizing that
estimation of a pixelwise flow field is an ill-conditioned problem, researchers have tried
to regularize it by imposing some form of smoothness. Most of the techniques can be
formulated as nonlinear optimization involving a term for compliance with the gradient
constraint equation (1) and a cost function for smoothness of the computed flow field.
With this approach, the process of estimating optical flow is converted to a nonlinear
optimization problem, although the starting point (1) is linear in the velocity field (u,v).
Results obtained by these techniques are often significantly off the mark, highly sensitive
to numerical precision, determined only at a sparse set of points with reasonable confi-
dence, and carry with them the pitfalls associated with nonlinear optimization. On the
other hand, estimation techniques that preserve the linearity of the problem by assuming
a patchwise constant, affine or higher-order flow field suffer from blocking artifacts at
patch boundaries. Besides, the best patch size is often determined by a poor tradeoff
between localization and accuracy.

In this paper, we present a technique for modeling the optical flow field of a sequence
as a linear combination of an overlapped set of basis functions. Assuming that the
image sequence satisfies the gradient constraint equation, we develop a linear system
for determining the model parameters. The model we choose inherently regularizes (1)
and the solution to the model parameters uniquely determines the motion field. We
prove that the extended least-squares solution of the system proposed here is unbiased
and robust to small perturbations in the estimates of gradients and to mild, random
non-compliance with the assumption (1). The linear system is sparse and its solution
involves a sparse matrix inversion. A numerically stable solution is obtained by using
the method of conjugate gradients, giving a dense and reliable flow field even when the
matrix is ill-conditioned. We minimize boundary effects with an implementational trick
that guarantees a corner-to-corner flow field. We enumerate a set of rules for choosing the
basis functions, based on mathematical necessity and intuitive desirability. Finally, we
compare our scheme with the standard optical flow algorithms discussed in the literature.
Our results are surprisingly accurate and consistent across a wide variety of synthetic
images, and agree well with our visual comprehension of real images. We conclude
that the overlapped basis model for optical flow which we propose here is as accurate
as, or better than, the best “generic” optical flow techniques (defined as techniques
that compute the pixel-wise optical flow by non-linear optimization), despite having to
conform to a model.




2 Modeling and Estimation of the Flow Field

When the projected 2D image field of a scene is given by 9 = (z,y,t), preservation of
luminance patterns implies the gradient constraint equation
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In (1), » and v denote the horizontal and vertical velocities (as functions of space and
time), respectively. Together, they constitute the optical flow of the sequence. For every
triplet (z,y,t) in (1), there are two unknowns, making the problem of computing the
optical flow ill-conditioned. In practice, the system is regularized by imposing additional
smoothness constraints on u and v. Current solutions to (1) take one of the following
approaches:

e minimizing a cost function comprising a compliance term and a smoothness
measure [2]

e assuming a patchwise constant, affine or polynomial model for the flow field [4,5,11]
o looking at higher order derivatives [3]

¢ formulating (1) as a matching problem using luminance, frequency or phase as the
matching criterion [6,7,9,10].

The performance of these techniques is not consistent with respect to accuracy and
reliability of the field, or to numerical sensitivity. Besides, some of the techniques are
computationally expensive.

2.1 Fitting a Motion Model

An alternative to computing the optical flow on a pixelwise basis is to model the motion
fields v and v in terms of a weighted sum of basis functions and estimating the weights
which constitute the model parameters. In this approach, the motion field is force-
fitted to the model and derives its smoothness properties from those of the model basis
functions. Let {¢ = ¢(z,y,t)} be a family of basis functions, and let the flow field be
modeled as

U= Eﬁ—.o urgr and v = Zf:o kP (2)

It is not difficult to see that the patchwise constant, affine or polynomial model is a special
case of (2). For example, setting @y to a rectangular window function is equivalent to the
constant-in-a-patch model. Likewise, choosing a wavelet basis for {@;} is tantamount
to performing a multiresolution optical flow computation. Since the optical flow field of
a sequence is largely smooth, it seems reasonable to model the field using (2) and an
appropriate basis {¢;}. What is interesting, however, is the mathematical elegance with
which the model parameters {ux,vr} can be extracted accurately, reliably and robustly,
at a low computational cost.




Substituting (2) into (1), we get
oY oY 0 _

This system of equations in 3-space can be reduced to a scalar equation for each instant
of time by integrating with a multiplicative kernel § = 8(z, y):
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(4) exists for every square integrable kernel 6. In order to solve for {ux, v}, it is necessary
to choose appropriate kernels in (4).

2.2 Solutions

System (3) is linear in the unknowns {uk,v;} and is analogous to the matrix-vector
system

Az —»b AeR®RMN M>N (5)

where z corresponds to the vector (uo,vo,...)". The analogy implies the applicability of
solutions and results of (5) to (3). In the discrete domain, the analogy is obvious since an
equation of type (3) exists for each pixel in the current frame, corresponding to one row of
the composite matrix [A|b]. The least squares (LS) solution of (5) is given by A’Az = A'b;
choosing 6 from the family {¢,3% } gives the LS solution of (3). In practice, only
discretized data is available for the lmage luminance field 3. The LS solution assumes
knowledge of the spatial derivatives of 1, which may not be known reliably. Any minor
and random non-compliance with (1) is accounted for in the observation error in b. A
robust approach must try to minimize sensitive dependence of the solution on the spatial
as well as temporal derivatives. In other words, in the analogue (5), the solution must
be accurate and robust to errors in A as well as in b; this can be stated as follows:

Assume z¢ is the ezact solution for the overconstrained linear system Az — b. Let A
and 6 be zero-mean, independent additive observation noise in A and b respectively, i.e.
the quantities A A+ A and b=b+ 6 are observed. Find an “optimal” estimate = of
Zo given A and b.

Our definition of “optimal” is deliberately vague. In the remainder of this section, we
will analyze three solutions, viz. LS, total least squares (TLS), and our proposed method
which we shall refer to as extended least squares (ELS), in terms of their optimality,
quantified by the bias and covariance of the estimates. We will make the assumptions
of uncorrelatedness of A and é to A and b, and of the invertibility of the matrix A’A.
In addition, we will assume the availability of the observation A’A for the ELS estimate,
the existence of which we shall prove later. The symbol & denotes a first-order approxi-
mation. Ra denotes the covariance matrix of the rows of A and rs is the variance of 6;,
assuming that the rows are 7id.




2.2.1 LS solution

The LS solution of (5) is zzs = (AA’)"1A’b with an error e =  — zo given by
ers ~ (A'A)TA'(6 — Azg) — gA’A)’lA'RAJi (6)

bias

zrs is the minimizer of || Az — b||; when the observation error is present only in b. Bias
occurs when A # A. The two random components of e are independent by the assumption
of independence of A and §. A modification of LS, the Corrected Least Squares (CLS)
method, removes bias while preserving the error covariance. The CLS estimate, which is
given by

ToLs = (/i/i' - RA)_IAIB (7)

assumes that Ra is known.

2.2.2 TLS solution

The TLS principle has emerged as an alternative to LS since it is capable of handling
errors in potentially all the observations in a linear system, not merely erroes on the “right
hand side” [13]. The TLS solution is obtained by minimally perturbing the composite
observation matrix [fl]b] to reduce its rank to N. z7rs, the TLS estimate, is given by

1 n
TrLs = ———0\ (8)
Un+1,n+1

where v,(:j_)l is the vector formed by the first n components of v,41, which is the eigenvector
of [A]i)]'[flli)} corresponding to its smallest eigenvalue p. vp41,n+1 is the n41th component
of Vpt1.

eTLs is not easy to determine for the TLS case, even when the observation errors are

small. The coupled expressions for errs and 4, to a first order approximation, are given
by

L = rst 26'6 — (5’/—1 + bIA):Eo —VAerrs
pro ~ (A'A+ A'A+ Rp)zo+ A'Aerrs — A'b— A'S (9)

It is cumbersome to analyze the bias and covariance of the TLS solution. Setting
Elerrs] = 0 in (9) gives as necessary condition for a zero bias estimate

(reI] — Ra)zo — 0 (10)

The significance of (10) to (3) is that the TLS estimate is unbiased only if the error
in estimating the temporal gradient is equal in variance to the error in estimating the
(windowed) spatial gradient. However, in typical image sequence problems, the temporal
gradient is calculated over a smaller number of frames than the spread of the spatial
gradient operator. In order to satisfy (10), it is necessary to discard useful information
by narrowing down the support of the spatial gradient operator, which is not desirable.
In addition, it has been argued in [13] that the covariance of an unbiased TLS estimate
is larger than that of the LS estimate, in the first order approximation as well as in
simulations. In effect, therefore, there is no fundamental gain in choosing the TLS over
the LS solution.




2.2.3 ELS solution

Neither the LS nor the TLS solution of (5) is unbiased in the general case, and the CLS
solution (7) shows sensitive dependence on errors in A as well as in b. Is it possible to
do better? The answer is in the affirmative if an additional observation, viz. G = AA,
is available. What is surprising is that (i) given the observations G and A’b, the ELS
solution proposed here shows no dependence on the error A in the estimate of A, and (ii)
the observation corresponding to G is available for (3). We will prove claim (i ) in this

section and deal with (ii) in the next. . .
The ELS solution of (5) is the solution of Gz = Ab,

TELS = G~ Ab (11)
which has the estimation error
egrs = G7U [A'(Azo — b)+ A'§+A'6]
@ TN ow
~ (A'A)"lA’é (12)

proving claim (i). zgLs is unbiased, and has a smaller covariance than z1g or zors since
it does not have the “A” term of the non-bias error in (6). In the original problem (3),

the ELS solution is obtained when 6 in (4) is chosen from the family {qbk 3, qSk where

the quantity 20 is an estimate of the derivative, giving the system
3{z.3} gving

0 0
%, ¢dxdy +Z /qﬁk——qﬁl ‘Z’dxdy + Z /¢k—¢, ¢d:vdy = 0
oy 0 0
%l ¢dzdy+zuk/¢k 2042 ¢dxdy+zvk/¢k—¢, 9% ndy = 0 (13)
with the estimated temporal derivative %;ﬁ We will now prove the availability of the

observations G = A’A and A’ b, which is equivalent to proving the computability of the

integrals in (13), under certain weak assumptions on the functional form of ¢; and the
¢
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estimate

2.3 Eliminating Derivatives

Consider the integral I(y) = [ ¢kgi’¢gad’dx Assume that the estimate 2%~ has a

oz}
differentiable functional form, i.e. the derivative Wf—ﬁé{%d}_} is known exactly. This
will hold for even the simplest of discrete gradient masks like (...,0,—1,1,0,. ..) since
the masks assume a smooth underlying functional form. Also, assume that the o are
differentiable and that ¢x(z,y) — 0 as £ — oo or y — +oo. Integrating I(y) by parts

over (—o0,00), we get

e
)= [ondly] - [ 2005, (19
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which is computable reliably without knowing the exact derivatives z=~ {x . Applying this
reasoning to (13) gives

/ ¢k¢laz¢) N E /3¢k¢>13z¢ _ a¢ 81/)
t
Zuk/ ¢k¢lay¢ ka/ ¢k¢13y — 0¢¢101/J (15)

where the integrals are over the entire X-Y plane and can be computed reliably. (15)
has the following desirable properties:

e The accuracy of the spatio-temporal image derivatives is not critical to the accuracy
of computation.

¢ The computed image flow is force-fitted to a model. The only conditions on the
model are that it be space-limited and differentiable.

e With finite-extent basis functions ¢, the system of equations has a sparse, banded
matrix structure.

2.4 Choice of Basis Functions

As in all estimation problems, there is the inevitable tradeoff between sensitivity and
selectivity, or equivalently, between accuracy and localization. The specific basis function
family {¢x} determines the shape of the ROC curve, and its density (defined as the
number of basis functions per unit area) fixes the operating point on the curve. Not all
differentiable, compactly supported curves are meaningful to the problem at hand. Since
the variations in optical flow are typically high-frequency and localized or low-frequency
and global, periodic bases do not offer any advantage. A point to note here is that
orthogonal bases do not lead to a simpler solution than non-orthogonal bases since there
are no integrals of the form [ @r#;. However, for every non-overlapping pair {¢;, ¢;}, the
corresponding entries in the observation matrix G’, éij and Gji, are zero. Thus, from the
computational aspect, it is desirable to minimize the number of overlapping pairs.

The reasoning thus far, including the final linear system (15), holds for any choice
of basis functions which are differentiable and which decay to zero. In the remainder
of this section, we will place certain additional restrictions on the choice of {¢x} that
ensure computational ease and have intuitive appeal for modeling a motion field. In our
experiments, we constructed {@;} from translations of a prototype function ¢, along a
uniformly spaced square grid of spacing w. The additional requirements we place on ¢
are the following:

o Separability: ¢o(z,y) = ¢o(z)do(y)
o Symmetry about the origin: ¢o(z) = do(—2)
o Peak at the origin: |do(z)| < ¢o(0) =




o Compact support: ¢o(z) =0 V|z|>w
o Constancy: ¢o(z) + ¢o(z — w) — 1,Vz € [0, w]
o Linearity: ¢o(z) + Ado(z — w) — A+ (A —1)Z Vz € [0, w)]

Note that constancy is a special case of linearity. Compact support ensures that each
basis function overlaps with exactly eight of its neighbors, in the cardinal and diagonal
directions. Constancy is essential for modeling the simple case of uniform translation, and
linearity is necessary for exactly modeling an affine flow field. Even if the requirement of
compact support were to be waived in view of the rapid decay of the Gaussian function,
it still does not satisfy linearity or even constancy unless the definition is broadened to
cover an arbitrarily large linear combination. In our experiments we have used the cosine
window

Peo(z) = % [1 + cos(%c—)] T € [—w,w] (16)

This function satisfies linearity only approximately, but has continuous derivatives and
performs very well. The bilinear interpolator

érofo) = (1- '7,;') ()

satisfies all requirements and performs satisfactorily although not as well as the cosine
window. We believe that this is due to second-order effects of the discontinuity in its
derivative.

The spacing w of the grid at which the basis functions are centered determines the
density of the basis functions, thereby determining the position of the algorithm on the
ROC curve. A larger spacing implies a larger support for ¢, which reduces error in
the estimates of the integrals in (15). However, increasing w means that fewer basis
functions (or degrees of freedom) are available for modeling the flow field. Trying to fit a
stiff model can potentially lead to non-compliance. w, therefore, determines the tradeoff
point between robustness and accuracy of the algorithm. In our experiments, we used
the rule
T
53

where the image size was r x c.

w = min{32,

(18)

2.5 Boundary Effects

Since spatial gradients are typically computed by convolving the image with a finite
impulse response filter, gradient estimates are absent at the periphery of the image within
a margin determined by the length of the operator. Generic optical flow algorithms often
do not estimate the flow within this margin due to non-availability of the gradients. Flow
estimates along the frame border are necessary in mosaicking and video compression. In
particular, since the emerging area in a panned sequence of images is at the periphery,
a motion estimate at the periphery is necessary in order to stitch together the image

7




sequence into one panoramic view. Instead of having no boundary flow estimate at all,
an estimate with a graceful degradation in its reliability, in consonance with the reduced
information available, is a preferable alternative.

Within a margin near the periphery, the modeled optical flow is determined by the
coefficients corresponding to basis functions both inside and outside the image frame. By
enforcing spatial continuity on the coefficients, it is possible to reduce the dependence
to coeflicients within the image frame. We have found zero-order continuity to be sat-
isfactory, although in theory first-order continuity is necessary for modeling affine flow.
Zero-order continuity is enforced by replacing the out-of-frame coefficients (ug, vx) by the
nearest peripheral coefficients (u;,v;) in the equations corresponding to peripheral ¢;s.
Integration is performed over the sub-region for which a gradient estimate is available.
Since the domain of integration is not infinite, (14) no longer holds, and (13) must nec-
essarily be used for peripheral coefficients. Using derivatives leads to a loss in robustness
at the periphery, which is also affected by the integration window being smaller than
the support of ¢;. This is the cost incurred for obtaining a corner-to-corner flow field
estimate.

2.6 Sparse Matrix Inversion

If the image frame is covered by M basis functions of which M, are peripheral, we have
2M,, equations of the form (13) and 2(M — M,) equations of the form (15). The integrals
on the LHS are aggregated into the observation matrix G which is ideally symmetric and
positive semi-definite. M is determined from the grid spacing w and the image size. The
solution for the coefficients {ux, vx} involves the inversion of G, which is a block diagonal
dominant 2M x 2M matrix, with only O(M) nonzero entries, when ¢q satisfies compact
support. We have used the conjugate gradient method [14] to perform this inversion.
This method takes O(M) iterations for convergence, each iteration involving three sparse
matrix multiplications of complexity O(M), leading to an overall complexity of O(M?).
In theory, the method will converge to the correct solution if the matrix is symmetric and
positive definite. In practice, we have never encountered a divergent situation for a wide
variety of imagery and severely ill-conditioned G. Since G is block diagonally dominant
in 2 x 2 blocks, a good starting point is the solution to the 2 x 2 diagonal subsystem for
each pair (ug,vr). In other words, the initial guess is the solution to (13) or (15) with the
summand set to zero when k # . When the submatrices are singular, the corresponding
starting values are set to zero. In the event that G is singular, the implementation in
[14] gives the best least-squares approximation to the system. This is reasonable since
singularity implies that there exist substantial areas in the image with zero or strictly
one-dimensional spatial gradient, in which case the optical flow is ill-defined. For small
regions with zero gradient, continuity of the direction of flow is effected by contributions
to the flow from neighboring basis functions.

3 Results

In keeping with the practice established in [1], we performed a series of experiments on
synthetic and real data. Exact flows are known for the synthetic data, which consist of
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Experiment Sinusoid Square

€ G 3 o
Horn & Schunck (original) | 4.19 | 0.50 | 47.21 | 14.60
Horn & Schunck (mod.) 2.55 | 0.59 | 32.81 | 13.67

Lucas & Kanade 2.47 1 0.16 X X
Uras et al. 2.59 | 0.71 X X
Nagel 2.55 1 0.93 | 34.57 | 14.38
Anandan 30.80 | 5.45 | 31.46 | 18.31

Singh (n=w=2,N=2) | 2.24|0.02 | 49.03 | 21.38
Singh (n = w=2,N=4) | 91.71 | 0.04 | 45.16 | 21.10
Fleet & Jepson (7 =1.25) | 0.03 | 0.01 X X
Proposed 2.46 | 0.03 | 23.95 | 24.36

Table 1: Performance on Sinusoid and Square data

the Sinusoid, Square, Translating tree, Diverging tree and Yosemite sequences (Figs. 1
and 2). Sinusoid is a uniformly translating modulated 2D pattern with a wavelength of
6 pixels. Square is the simple case of a white square moving against a dark background.
The tree sequences are synthesized from realistic data simulating camera translation with
respect to the 2D scene. Yosemite is a 2D rendering of a 3D model, with motion dis-
continuities introduced at the top of the mountain range. The clouds in this sequence
translate uniformly across the image while undergoing a steady luminance change. In
addition, there is significant aliasing near the lower portions of the image, making this se-
quence particularly challenging. The SRI trees, Coke can, Rubik cube and Tazisequences
comprise the real data (Figs.3-5).

An error measure can be defined for estimates of the optical flow for synthetic data
sequences, since exact flows are known. We use the angular error measure employed in
[1]. Assume that the true and computed flows at a point (z,y) in a particular frame are
(u0,v0)" and (u,v)’ respectively. Define vectors vo = (ug,vo,1)’ and v = (u,v,1)". The
error angle € at (z,y) is given by

) (19)

Vo.V

¢ = arccos( o]

€ 1s insensitive to the magnitude of the motion vector and offers a normalized measure
against which a range of velocities can be compared meaningfully. The mean value of
€ over all image points where an optical flow estimate is available is the final scalar
error metric €. The standard deviation & of € indicates the spread of errors over the
image frame. € and &, for the generic optical flow algorithms, have been obtained from
[1]. For the real sequences, exact flows are not known and the performance is evaluated
subjectively by visual analysis. The flows shown in Figures 1-5 are suitably downsampled
and rescaled. The tabulated values of € and & are in degrees.

In order to keep the comparison equitable, we have only considered optical flow tech-
niques giving a 100% dense flow field in Tables 1 and 2. Even among these, many algo-
rithms estimate optical flow only over an inscribed region whose margin is determined by
the spread of the gradient operator, while the proposed technique gives a corner-to-corner

flow estimate. For the Sinusoid data set (Fig. 1(a-b), Table 1), the proposed technique -
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Experiment Translating Tree | Diverging Tree Yosemite

€ & € G 3 &
Horn and Schunck (original) | 38.72 27.67 | 12.02 | 11.72 | 31.69 | 31.18
Horn and Schunck (modified) | 2.02 2.27 | 255 3.67 | 9.78 | 16.19
Uras et al. (unthresholded) 0.62 0.52 | 4.64 348 | 8.94 1 15.61
Nagel 2.44 3.06 | 2.94 3.23 | 10.22 | 16.51
Anandan 4.54 3.10 | 7.64 4.96 | 13.36 | 15.64
Singh (step 1, n =2, w = 2) 1.64 244 | 1766 | 14.25 | 15.28 | 19.61
Singh (step 2, n =2, w =2) 1.25 3.29 | 8.60 5.60 | 10.44 | 13.94
Proposed 0.61 0.26 | 2.94 1.64 | 8.94 | 10.63

Table 2: Performance on Translating tree, Diverging tree and Yosemite

ranks after Fleet and Jepson’s, which benefits greatly from the sharp frequency spec-
trum of the input sinusoid, and Singh’s method, which is comparable in accuracy. The
proposed technique is the best for Square (Fig. 1(c-f), Table 1) by a wide margin. For
the Square sequence, Fleet and Jepson’s algorithm is unable to produce a 100% dense
flow field, and € of Singh’s algorithm is greater than twice € of the proposed algorithm.
Interestingly, while the “true” flow field of Square has been deemed to be a uniform trans-
lation across the image (Fig. 1(d)), it is a moot point whether the background is indeed
moving along with the white square. The output of our algorithm (Fig. 1(e)) shows only
the square in motion, which is an interpretation as credible as the “true” flow. On the
other hand, Anandan’s algorithm (Fig. 1(f)), which ranks second in Table 1, computes
flow only for approximately half the image area due to border effects, and the computed
flow pattern is visually meaningless. The proposed technique performs very well for the
synthetic data sets Diverging tree, Translating tree and Yosemite (Table 2). The results
are shown in Fig. 2 where the three columns correspond to the center frame, true flow
and computed flow respectively. Our algorithm ranks at the top for Translating tree and
Yosemite and in second place for Diverging tree. Note that the error standard deviation
& is significantly smaller than the & of the other techniques. The results indicate that
the proposed technique is consistently accurate over the range of synthetic imagery.
Likewise, for the real data sets (Figs. 3-5) we can see that the computed flows are
dense and visually consistent with the observed motion. In contrast with the results in
[1], it can be seen that our flows do not show large random errors, and all reasonably-sized
objects in motion are picked up. The computed flow is quite accurate—for example, the
rotational flow at the top of the Rubik cube shows up in detail. For the Tazi sequence, all
vehicles in motion are captured, and for SRI trees the direction of translation is computed
accurately. The divergent motion of the Coke can sequence shows up clearly despite the
lack of detail and presence of occluding edges. For a panning motion, it is possible to
compute a pseudo-depth map on the basis of the flow field. Such a map is shown in
Fig. 5(c) for SRI trees, using the computed flow (Fig. 5(b)). The ground and branches
close to the camera show up as bright regions while the distant background shows up as
dark. The limitation of using a model-based approach is in its inability to capture highly
localized motion as seen in the non-appearance of the pedestrian in the top left area of
Tazi on the flows. However, an examination of the flows in [1] reveals that none of the
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generic methods succeed in locating the human, and many even fail to locate the two
dark vehicles in motion. The only inaccuracy we can find from a visual inspection of the
flows is a small kink near the fork of the tree in SRI trees which is due to occlusion of
the background, leading to a structured non-compliance with (1).

From our experiments, we can infer that the primary source of error in our technique
is non-compliance with (1), most often as result of occlusion or change in illumination. It
is possible to introduce a luminance term in (1) and perform a similar analysis. Likewise,
it is also possible to integrate information across time either by assuming a constant
motion model or by extending the domain of the basis function set {¢;} over the temporal
dimension. We conjecture that either of these extensions will improve the accuracy of
the flow estimates at the cost of increased computation.

4 Conclusion

The results of the proposed technique clearly indicate its superiority relative to generic
optical flow methods in accuracy, robustness and reliability for a range of synthetic and
real data. Apart from the primary requirements of accuracy, smoothness and computa-
tional ease, there are secondary, application-specific requirements that determine which
algorithm is used for motion analysis in a computer vision system. Situations exist where
a model-based optical flow estimate is preferred over a generic optical flow estimate. For
example, in 2D image stabilization, the flow field is consolidated into a small set of (sim-
ilarity or affine) parameters that characterize global interframe motion. Outliers like
foreground objects can severely impair mean-square estimates of global motion from the
pixelwise flow field. When the optical flow is represented in terms of a small number of
parameters, it is possible to apply a robust but computationally intensive estimator based
on, for instance, the Hough transform to compute global motion parameters. This tech-
nique becomes increasingly infeasible in the generic optical flow case due to the increased
data size.

Similarly, in the context of video compression, a flow field characterized by a model
is preferable to a generic flow field. Encoding a generic flow field for transmission over a
channel or for storage involves increased complexity, higher bandwidth, and more errors
due to quantization than does the process of encoding a set of model parameters. The
only benefit in having a generic description of the field is that motion discontinuity in-
formation, if it is extracted reliably, can aid the compression process. However, for video
compression, it can be argued that the cost associated with encoding motion discontinu-
ities is sufficiently high to negate the advantage of using a generic flow field. Thus, the
loss of generality in requiring that the flow field conform to a model is no less advan-
tageous. In light of the above, we conclude that the robust optical flow modeling and
estimation technique proposed here is better in performance and wider in applicability
than the standard optical flow methods in the literature.
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